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In this paper we study some instabilities and bifurcations of two-dimensional channel 
flows. We use analytical, numerical and experimental methods. We start by 
recapitulating some basic results in linear and nonlinear stability and drawing a 
connection with bifurcation theory. We then examine Jeffery-Hamel flows and 
discover new results about the stability of such flows. Next we consider two- 
dimensional indented channels and their symmetric and asymmetric flows. We 
demonstrate that the unique symmetric flow which exists at small Reynolds number 
is not stable at larger Reynolds number, there being a pitchfork bifurcation so that 
two stable asymmetric steady flows occur. At larger Reynolds number we find as 
many as eight asymmetric stable steady solutions, and infer the existence of another 
seven unstable solutions. When the Reynolds number is sufficiently large we find 
time-periodic solutions and deduce the existence of a Hopf bifurcation. These results 
show a rich and unexpected structure to solutions of the Navier-Stokes equations 
at Reynolds numbers of less than a few hundred. 

1. Introduction 
In this paper we study some instabilities and bifurcations of two-dimensional 

channel flows. We use all means available, including asymptotic and qualitative 
analysis as well as numerical and laboratory experiments. It will be seen that the 
bifurcations of this apparently simple class of flows reveal a rich and unexpected 
structure of the solutions of the Navier-Stokes equations at  not very large values 
of the Reynolds number. Our calculations show some phenomena not yet observed 
and for which we have no completely satisfactory explanation. We write much of this 
paper in the language of bifurcation theory, and thence find new insights into 
well-known examples such as Jeffery-Hamel flow. This language is appropriate 
because our interest is in the qualitative nature of channel flows when the parameters 
which determine the flow are varied. We thereby demonstrate changes in the 
qualitative nature of the flow, even though we cannot explain why all the changes 
occur. 

Our motivation for this study comes from the well-known observation that flow 
through a channel which has an expansion throat and is symmetric about its 
centreline becomes asymmetric as the Reynolds number R increases. This is 
sometimes called the Coanda effect (cf. Wille & Fernholz 1965), and is explained by 
observing that an increase in velocity near one wall will lead to a decrease in pressure 
near that wall and once a pressure difference is established across the channel it will 
maintain the asymmetry of the flow. There are extensive experimental studies of this 
phenomenon, for instance by Cherdron, Durst & Whitelaw (1978). The configuration 
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of the channel may be partially characterized by the expansion ratio D, which is the 
ratio of the channel width downstream of the expansion to the width upstream. It 
is convenient to define the Reynolds number of the flow as R = Q/2v ,  where Q is the 
steady volume flux of fluid of kinematic viscosity v driven along the channel. As R 
increases from zero the sequence of events is as follows. For sufficiently small values 
of R a steady symmetric flow is observed. The uniqueness, and therefore symmetry, 
of this flow is proved by Serrin (1959). For values of R above some critical value a 
steady asymmetric flow is observed unless D is close to one, in which case a 
time-periodic flow is observed. The asymmetry can have one of two orientations, 
according as the main stream is diverted towards one wall of the channel or the other. 
Thus, for example, in flow through a channel with expansion ratio D = 3 asymmetric 
flows have been observed when R = 30. If R is increased further then various events 
may occur according to the shape of the channel. The flow may remain steady but 
become three-dimensional. Alternatively, the flow may remain two-dimensional but 
become time periodic with regular shedding of vortices. Ultimately the flow will, of 
course, become turbulent as R is increased. 

The above description may be translated into the language of bifurcation theory. 
A t  sufficiently small values of R there is a unique solution. As R is increased a 
pitchfork bifurcation occurs and two stable solutions exist. We infer that an unstable 
solution also exists. Bifurcation theory allows us to clarify the nature of the 
multiplicity of possible flows, whereas an experiment will give one or other of the 
stable asymmetric solutions. We can obtain numerically the unstable symmetric 
solution by imposing suitable boundary conditions, for instance by calculating the 
flow in one half of the channel. As R is increased further, other bifurcations occur. 
Thus the steady two-dimensional asymmetric solutions become unstable and a 
steady three-dimensional flow may occur, indicating other bifurcations. Alternatively 
a Hopf bifurcation may occur, resulting in a time-periodic solution. Following each 
bifurcation we can use powerful general theorems to infer the existence of unstable 
solutions which may be neither observable nor easily calculated. 

Some qualitative results of the linear theory are used in $2 to build a qualitative 
nonlinear theory of bifurcations of two-dimensional flows. This nonlinear theory is 
illustrated by the well-known examples of plane parallel flows, swirling flows and 
Jeffery-Hamel flows. The example of Jeffery-Hamel flow is taken up in detail in Q 3, 
the classical results being presented in a new form suitable for application to 
two-dimensional flows in two-dimensional channels with walls of small curvature. 
Important new results about the instability of Jeffery-Hamel flows are presented. 

Physical arguments together with all this theory are then used in $ 4  as a 
conceptual basis on which we interpret extensive numerical calculations of some 
flows in symmetric two-dimensional channels which have a widening followed by a 
narrowing. The configurations of the channels are illustrated in figure 1. Many 
bifurcations are identified and elucidated to reveal the rich structure of the regimes 
of flow as the configuration of the channel and the Reynolds number are varied. The 
Coanda effect is clearly shown as a break in the symmetry of flow following a 
pitchfork bifurcation. 

These numerical experiments were made in conjunction with laboratory experi- 
ments, which are described in $ 5. The results of the two kinds of experiment are both 
supplementary and complementary. The laboratory experiments are in broad 
agreement with the numerical experiments but not sensitive enough to give the first 
break of symmetry. The experiments also show that three-dimensional effects, 
although small at first, become important as the Reynolds number increases. 
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FIQURE 1.  A sketch of the configuration of the channels (defined in equation (4.1)). 

2. Stability and bifurcation 
Let us consider the linear stability of a steady two-dimensional flow of a viscous 

incompressible fluid. We denote the basic velocity of the fluid by U(x, z, R ) ,  where 
we use dimensionless variables based on some length- and velocity-scales, and where 
R is the corresponding Reynolds number. For channel flows, we shall adopt the 
convention that the dimensionless volume flux is two. We let V be the domain of 
the flow in the (z,z)-plane and specify the flow by appropriate conditions on the 
boundary a V of the domain. These conditions may be that U is given on some parts 
and is periodic on other parts of aV. 

To examine the stability of this basic flow, let the velocity of the perturbed flow 
be 

for a small parameter E ,  and linearize the Navier-Stokes equations as s+O for fixed 
R = &/2v. Therefore 

U ( X ,  t )  = U(z,  z, R )  + EU’(X,  t ,  R ) ,  (2.1) 

U; + U U ’  + u’*V U = -Vp’ + R-’V2u’ (2.2) 

and V * u ’ =  0 in V ,  (2.3) 

where sp’ is the dimensionless perturbation of the pressure. In the usual way, we use 
the method of normal modes to solve the linearized problem, taking 

u’(x, t )  = Re [estf2(x)], p’(x,  t )  = Re [eStlj(x)], (2.4) 

s l i+  U.Vli+ii.VU = -V$+R-’V2ri, (2.5) 

and V.ri=O in V. (2.6) 

for an eigenvalue s and eigenvector (ii,lj) to be determined. Therefore 

There will also be appropriate linear homogeneous boundary conditions on a V .  

the stream function Y of the basic flow and $ of the disturbance so that 
For two-dimensional disturbances, the problem may be simplified a little by taking 

U = ( Y2, 0, - YJ, u’ = Re [eSt($,, 0, - $J]. (2.7) 

Then the NavierStokes equations reduce to the linearized vorticity equation, 

sV2$+ YzV2$,- YzV2$,+(V2!Pz) $,-(V2$,)$, = R-’V4$ in V. (2.8) 

There will also be linear homogeneous conditions on a V ,  so that, for example, 
$ = @/an = 0 on some parts of a V and $ and a$/& are periodic on the other parts. 
Equation (2.8) is of the form 

qVz$ - RM$ = V4$, (2.9) 

where q = Rs and M is a linear differential operator which depends on Y but does 
not depend explicitly on R. 

This poses a real eigenvalue problem, so that for given Y and R ,  each eigenvalue 
q is either real or one of a complex conjugate pair. When V is bounded the eigen- 
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values are discrete and in general simple; then they may be ordered so that 
Req, 2 Rep, 2 ... . 

When R = 0 the problem in (2.9) is formally symmetric. Therefore the eigenvalues, 
qg) say, are all real, and we may order them so that qf" > qf) > . . . . Further the flow 
is stable, with 0 > qp), if R is chosen so that the limit R+O+ corresponds to the 
dimensional flow tending to  zero everywhere and thence to  Stokes flow (Serrin 1959, 
p. 254). It should be remembered that in general Y involves R and that it may be 
desirable to choose R in such a way that Stokes flow is not the only flow to arise when 
R = 0. 

As R increases from zero the eigenvalues qn all remain real until two coincide and 
become a complex conjugate pair. This may occur before or after the onset of 
instability, i.e. before or after R reaches the value R, for which Req, = 0. If i t  occurs 
before then we have Im q, =!= 0 at R = R,, and if afterwards then Im q1 = 0 a t  R = R,. 
I n  the latter case some authors say that the principle of the exchange of stabilities 
is valid. It is also possible that the eigenvalues may remain real for all values of R. 

The solutions q of a quadratic equation whose real coefficients depend upon R offer 
a simple illustration of the functional analytic background to the previous paragraph. 
Davis (1969) discussed this issue of hydrodynamic stability in quite general terms, 
although his results are not strictly applicable to  the present problem. DiPrima & 
Hall (1984) have shown, in an interesting example of axisymmetric instability of 
Couette flow between two cylinders, that  two higher modes coalesce and become 
complex although the most unstable mode remains real as the Reynolds number 
increases. 

Squire's transformation governs the stability of plane parallel basic flows, so some 
flows are most unstable to two-dimensional disturbances. However, axisymmetric 
disturbances are often the most unstable for Couette flow between rotating cylinders, 
so that two-dimensional disturbances are not the most unstable for all two-dimen- 
sional basic flows. 

If the basic flow, U = ( U ,  0, W), is symmetric about some centreline, say z = 0, 
then U ( z ,  -2) = U(z,  z) and W ( z ,  -2) = - W ( z ,  z). It follows that each eigenmode is 
either antisymmetric or symmetric, i.e. Gn is either an even or odd function of z 
respectively. Now when R = 0 the eigenvalue problem is real and self-adjoint and 
so may be formulated as a variational principle, which shows that the least stable 
mode has an antisymmetric eigenfunction G,. By continuity, the reality and ordering 
of the antisymmetric and symmetric eigenfunctions for a symmetric basic flow will 
persist as R increases from zero until two eigenvalues coalesce. The coalescence of 
the eigenvalues of symmetric flows is as follows. If two real eigenvalues coalesce and 
become complex as R increases then both eigenfunctions remain either antisymmetric 
or symmetric; if two real eigenvalues coalesce and remain real as R increases then 
the eigenfunctions may be antisymmetric or symmetric but their symmetry will be 
unaltered by the coalescence. 

By appeal to quite general results of bifurcation theory, much can be revealed 
about the qualitative nature of the bifurcation of steady flows. We summarize here 
the results we need to  use later. Justification of these results and more details are 
given by, for example, Benjamin (1978) and Drazin & Reid (1981). We will then go 
on to illustrate the summary with a few examples of two-dimensional flows. 

For bounded flows, the most unstable normal mode is unique or one of a complex 
conjugate pair, and the linear theory of stability gives the stream function in the 
former ease as 

@(z, z ,  t )  = Y ( Z )  + sA(t) #,(x, z) +smaller terms. (2.10) 
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as s-tO for each value of R ,  where A(t) = A, exp (sl t )  and s1 - k(R-R,) as R+ R, 
for some k > 0. The weakly nonlinear theory gives a similar result when R is close 
to R,, although A satisfies a nonlinear evolution equation such as the Landau 
equation of the form 

- s1 A -llA12A, 
dA 
dt 
_-  (2.11) 

and therefore does not grow exponentially with time. 
As R increases, the number and character of the steady solutions may change. It 

is often convenient to take some functional, [ say, of the infinite-dimensional space 
of solutions of the NavierStokes equations so that each steady solution u , p  is 
represented by the single quantity 5. Thereby we may plot the steady solutions as 
a function of R in a plane bifurcation diagram which is the graph of 5 as a function 
of R. To represent the infinite-dimensional solution a little better it may be useful 
to take two or more state variables like 5. The aim is to choose variables that are both 
physically informative and also easy to calculate or measure. Often one component 
of the velocity at a suitable given point of the flow is a good state variable to use. 

A typical transition from a stable to an unstable steady flow, when a simple real 
eigenvalue of a mode increases through zero as R increases through a critical value, 
is a turning point. Also transcritical and pitchfork bifurcations of steady flows are 
common, the latter being associated with the breaking of some symmetry of flow. 
Except at values of R where bifurcations occur, the number k of steady flows is odd 
and at least +(k-  1) of them are unstable (Benjamin 1978). It follows that there is 
at least one symmetric steady flow when the configuration is symmetric. Hopf 
bifurcations, at which steady flows become time periodic, are also common. Again, 
other bifurcations occur along the route to turbulence, but we shall not meet them 
here. 

In interpreting laboratory and numerical results it is importaat to remember that 
they are imperfect, i.e. that they have small discrepancies from their ideals and, in 
particular, may be only approximately symmetric. Of the elementary bifurcations we 
have mentioned, only a turning point and a Hopf bifurcation are unaltered by small 
imperfections. 

Plane parallel flows are an important class of two-dimensional flows. Plane Couette 
flow is stable to all infinitesimal disturbances, whatever the value of the Reynolds 
number, but unstable to disturbances of finite amplitude a t  sufficiently large values 
of the Reynolds number. The nature of other flows compatible with the boundary 
conditions of plane Couette flow is poorly understood. Plane Poiseuille flow, with 
velocity distribution V(z) = Q( 1 - zz), say, is stable to infinitesimal disturbances for 
R < R,, where R, = 3848, and unstable for R > R,. (Remember that we have chosen 
the scales 80 that the dimensionless volume flux of the flow is two.) By Squire’s 
transformation, the most unstable mode at the onset of instability is two-dimensional. 
It is, however, only the most unstable of a continuum of three-dimensional modes. 
The nonlinear theory gives a subcritical Hopf bifurcation at R = R, and a complicated 
set of three-dimensional unsteady flows. 

Jeffery-Hamel flows are another well-known example. These two-dimensional 
steady flows in converging and diverging channels with plane walls are described in 
many textbooks. The rich structure of their bifurcations has been elucidated recently 
by FraRnkel (1962) and Buitrago (1983), though the structure is not widely 
understood because of the complication of dependence of the solutions on the 
parameters in which it is most convenient rnathemtically to describe the flows. There 
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is little to add to Fraenkel's (1962) account of the steady Jeffery-Hamel flows 
themselves, but in $ 3  we shall recalculate some of his solutions in a form which is 
more useful physically, identify a pitchfork bifurcation, and justify the important 
result that most of the types of Jeffery-Hamel solutions are unstable. 

The flow in a channel may be described by the use of various approximations. To 
be specific, let the walls of the channel have equations z =f(z), z = -g(z), where the 
z-axis is directed along the channel. Then the domain of the flow is -g(z) < z < f(z). 
Also the tangents to the walls a t  each station z make angles a(z) = tan-' df/dx and 
p(z) = tan-' dgldz with the x-axis. 

If a, /M 1 then the flow is quasi-parallel and a plane parallel flow is a local 
approximation to the flow along the channel. This approximation was used by Eagles 
(1966) to examine the instability of a family of Jeffery-Hamel flows in a divergent 
channel. He was led to  solve the Orr-Sommerfeld equation to find the instability. 
This approximation, essentially that the width of the channel varies slowly down- 
stream, has been developed and applied by Eagles & Weissman (1975) and Eagles & 
Smith (1980). 

If daldx, dp/dx 4 1 then the angles of the walls change slowly, i.e. their curvature 
is small, and a Jeffery-Hamel flow is plausibly a local approximation to  flow along 
a channel. This approximation was used by Fraenkel (1962, 1963) to  describe some 
steady flows in channels, and will be developed in §J 3 and 6. Fraenkel described in 
detail only steady symmetric flows in symmetric channels. Georgiou & Eagles (1985) 
examined the linear stability of such flows when the curvature of the channel walls 
is small. 

These asymptotic methods are useful for many flows, but for many others there 
is local instability and a breakdown, so that the flows are mostly not quasi-parallel 
or nearly Jeffery-Hamel. It should be recognized that each flow is steady or 
time-periodic as a whole, and each flow becomes unstable as a whole. Also local 
instability of small but finite amplitude may lead to  a breakdown of the assumed 
basic flow. Nonetheless, the approximations of parallel flow and of small wall 
curvature are valuable in the interpretation of the evolution of disturbances and the 
development downstream of real flows. For example, a flow may be stable, yet small 
initial disturbances may grow where the flow is locally unstable, propagate 
downstream, and finally decay where the flow is locally stable. So it is desirable to 
use asymptotic results as well as experiments, numerical calculations, physical 
mechanisms and qualitative theory. 

3. Jeffery-Hamel flows 
Jeffery (1915) and Hamel (1916) independently considered the steady radial flow 

of a viscous incompressible fluid between two inclined plane walls. They found a 
similarity transformation to  reduce the Navier-Stokes equations to  an ordinary 
differential equation, and derived some interesting results. Their work was developed 
by many authors, an essentially complete solution being given by Fraenkel (1962). 
However, Buitrago (1983) has recently given more details of the asymmetric 
solutions, and Hooper, Duffy & Moffatt (1982) applied the transformation to flows 
of a fluid of variable viscosity. I n  this section, we shall first recapitulate the 
Jeffery-Hamel (called JH hereinafter) problem, then recalculate some results in a 
new form suited to our study of the instability and bifurcation of channel flows and 
finally investigate the instability of J H  flows. 

Let ( r ,  0) be plane polar coordinates so that the equation of the walls are t9 = f a  
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I or 11,; < 
FIGURE 2. Sketches of velocity profiles of some Jeffery-Hamel flows. (a) Type I or 11,. (b )  Type 
11,, 11,, IV, or V, at bifurcation I,. (c) Type 11,. (d) Type 11,. (e) Type 11,, 11,, IV,, V, at 
bifurcation. (f) Type 11,. (g) Type 111,. (h)  Type 111,. (i) Type IV,. (j) Type V,. The sketches 
indicate the velocity profile, and therefore the function g(y), as 0 increases from -a at the lower 
wall to a at the upper wall for a fixed value of r .  

and that r > 0 and -la1 < 8 < la1 in the domain of flow. We assume that the flow 
is everywhere in the radial direction due to a line singularity at r = 0, and has 
velocity u, say. Then the stream function Y is a function of 8 alone, u = r-l dY/d8, 
and the volumetric flux between the walls is given by Q = jta UT d8. By convention, 
we take Q 2 0, so that a < 0 for flow converging to a sink at r = 0, and define 
R = Q/2u, where u is the kinematic viscosity of the fluid. Then R may be small, or 
even zero, when the maximum velocity of the flow is large. On defining y = 8/a and 
G(y) = 2Y(8) /Q,  the Naviel-Stokes equations reduce to the ordinary differential 
equation 

governed by the boundary conditions, 

GyyYy + 4a2Cyy + 2aRG, G,, = 0, (3.1) 

G = f 1 ,  G, = 0 at y = f 1 respectively. (3.2) 

It is also convenient to define g = Gar, so that u = Qg/2ar. 
There are five types, I-V, of JH solutions (cf. Fraenkel 1962). For types I and 11, 

there is a symmetric pure outflow, i.e. u(r, -8) = u(r,8)  and u(r,8) > 0 for 
-a < 8 < a. For type 11, there is a symmetric net outflow, u having 2n-2 zeros 
between the walls, for n = 1 , 2 ,  . . . . For type 111, there is symmetric net inflow, u 
having 2n-2 zeros between the walls. Thus for type 111, there is a symmetric pure 
inflow. For types IV, and V, there is asymmetric flow, with outflow and inflow as 
8 varies. For type IV, there is outflow near the wall 8 = -a, and u has 2n- 1 zeros 
between the walls. Each flow of type V, is the mirror image in the centreline 8 = 0 
of a flow of type IV,, and vice versa. These types of flow are illustrated in figure 2 .  
All solutions may be specified in terms of Jacobian elliptic functions. 

For the record, note that Buitrago (1983, p. 10) inferred from Fraenkel's (1962) 
paper the details of solutions of type IV,, stating explicitly that 

a = n@K(m), R = 6nQ-i{E(m)-K(m)dn2(/31m)}, (3.3) 

and g ( y )  = 6mnK(m) Q-iR-'(sn2(Plm)-sn2(nK(m) (y+ l)-,dlm)}, ( 3 . 4 )  

for 0 < m < 1 and 0 < B < K(m),  where Q = 1 + m-3m sn2 (Plm). The explicit solu- 
tions V, follow by symmetry in fy. 
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m 0 0.05 0.1 0.15 0.2 0.25 
a in 1.50936 1.44221 1.368 15 1.28554 1.19201 
R 0 0.24995 0.53371 0.861 67 1.249 70 1.72378 

m 0.3 0.35 0.4 0.42 0.44 0.45 
a 1.083 96 0.95542 0.794 93 0.71666 0.625 73 0.57360 

4.46606 5.26089 6.38634 7.167 60 R 2.33035 3.16434 

m 0.46 0.47 0.475 0.48 0.485 0.49 
a 0.51522 0.448 12 0.40997 0.36750 0.31897 0.261 02 
R 8.20642 9.69954 10.748 17 12.15448 14.194 09 17.579 69 

m 0.492 0.494 0.496 0.498 0.5 
a 0.23367 0.20255 0.16553 0.11715 0 
R 19.74228 22.89765 28.167 87 40.01 103 00 

TABLE 1 .  The boundary a,, with equation a = a,(R) in the (a,R)-plane, which marks the 
onset of instability of JH solutions of type 11, and the bifurcation of types 11,, 11,, IV, and 
V,. The boundary is given in terms of the parameter m by a = (1-2m)iK(m) and 
R = 6(1-2m)-k{E(m)-(l -m) K(m)} for 0 < m < 4 in the notation of Fraenkel (1962), where K 
and E are t hp  complete elliptic integrals. Note that a - ( 1  -2m)i K(4) and R - 6(1-2m)-i x 
{E(b) - iK( t ) }  as mrt so that a - 4.712/R as R-tm. 

For each pair of values of a and R,  many solutions occur, as is recounted by 
Fraenkel(1962), Hooper et al. (1982) and Buitrago (1983). Some curves of transition 
from one type of solution to another are shown in figure 5 of Fraenkel (1962). We 
also give in table 1 some recalculations of the important boundary g,, which marks 
the pitchfork bifurcation where flows of types 11,, 11,, IV, and V, coincide. Figure 
2(b) is a sketch of the velocity profile of the flow a t  the bifurcation. 

Bifurcation diagrams in the planes of g(0) and a, and of g'(0) and a, for R = 20 
are given in figure 3. The diagrams show how multiple equilibria arise as a passes 
its values on boundaries such as W,. Note that g(0) is proportional to the velocity 
and g'(0) to  the transverse velocity gradient on the centreline 6' = 0, and that we take 
a > 0 for net outflow and a < 0 for net inflow. We have chosen R = 20 as a useful 
and 'typical' value, the qualitative characters of the bifurcation diagrams for a < in 
being similar for all R, although Buitrago (1983) demonstrates that there are cusps 
on the boundaries an for a > in. As R increases more solutions occur in the range 
-in < a < in relevant to channel flows. Note, in particular, that as a increases 
through its value a3(R) on B3 the J H  flows of type 11, are not succeeded continuously 
by any J H  flow, as is evident in the work of Fraenkel(l962) and of Moffatt & Duffy 
(1980, § 5 ) ,  who considered the case R = 0 and denoted a3 by a,. 

To investigate the stability of these flows, we may use the ideas of $2. The solutions 
of types I and 111, must be stable for sufficiently small values of R, because the 
maximum velocity of the flow (at least if we exclude a neighbourhood of r = 0 from 
the domain of the flow) may be made as small as we please. Also, as a+O for fixed 
R, the flow tends to  plane Poiseuille flow, and therefore is stable if R < 3848. 
Therefore, by continuity, i t  is plausible that the flows 111,, I and 11, remain stable 
as a decreases or increases from zero. Examination of the bifurcation a t  $3, shows 
that i t  is a subcritical pitchfork. Therefore the solution 11, becomes unstable to an 
antisymmetric mode as a increases beyond its critical value a,(R) on W,, 11, being 
stable subcritically, 11, unstable supercritically, and IV, and V, unstable subcritically. 
It is possible, however, that  flows III,, I or 11, may become unstable first to a 
two-dimensional disturbance incompatible with the similarity form of the JH flows 
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FIGURE 3. The bifurcation diagram of some Jeffery-Hamel flows for R = 20 in (a) the (a. g(0))-plane 
and (b )  the (a,g’(O))-plane. Note that the subcritical pitchfork bifurcation 9, is seen in two 
projections in these planes. 

or, indeed, to a three-dimensional disturbance. As we shall see, the latter possibility 
is implausible in the light of laboratory experiments. When a increases to its value 
on W, the solution 11, has a turning point and becomes unstable to a second mode, 
which is symmetric. 

These results may be substantiated by numerical solution of the eigenvalue 
problem of 2. Rather than face this formidable problem, we take a model problem 
after Hooper et al. (1982, p. 303), namely 

G,,, = G,,,, + 4a2GUy + 2aRGU G,,, (3 .5 )  

and G = k 1, G, = 0 at y = & 1 respectively. (3 .6 )  

The system (3.5) and (3.6) reduces to the JH problem (3.1) and (3.2) for steady 
solutions, a say, and also represents the convection and diffusion of vorticity by the 
use of the time derivative on the left-hand side of equation (3.5). To consider the 
‘stability’ of a J H  flow then, put 

G(Y,t) = G(Y)+EG‘(Y,t), ( 3 . 7 )  

linearize equation (3.5) for small E ,  and take normal modes of the form 

It follows that 
G(y, t )  = Re {e”G,(y)}. 
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and 
dG 

G , = L = O  a t y = f l .  
dY 

(3.9) 

Multiplication of equation (3.8) by the complex conjugate G,* of GI and integration 
from y = - 1 to 1 then gives the 'energy' equation, 

on integration by parts and the use of boundary conditions (3.9). Therefore s, and 
thence G,, is real. Indeed we see that the eigenvalue problem, (3.8) and (3.9), is real 
and self-adjoint ; also (3.8) may be deduced from avariational principle, corresponding 
to a minimum of the 'energy', in which s arises as an undetermined multiplier. 

The JH flows of types I, 11, and 111, are symmetric and therefore B is an odd 
function of y. Therefore the eigenvalue problem, (3.8) and (3.9), is symmetric, and 
each eigenfunction G, is either an odd or an even function of y, corresponding 
respectively to a symmetric or an antisymmetric disturbance of the JH flow. The 
variational principle shows that the eigenfunction G,  of the least stable mode is even. 

An integral of equation (3.8) is 

*+ 
dY2 

where we define g1 = dG,/dy. If G, is even, then g1 is odd and the constant is zero. 
Therefore the most unstable mode is governed by the Sturm-Liouville problem 

*+ 
dY2 

(3.11) 

and g1 = 0 at y = 0 , l .  (3.12) 

Equation (3.1) implies that when s = 0 a solution of (3.1 1)  is given by g1 = d28/dy2. 
This also satisfies the boundary conditions (3.12) when a = a,(R) on a2, because then 
d28/dy2 vanishes on the boundaries y = f 1 ,  as is illustrated in figure 2 (b ) .  Thus we 
have a simple expression, in terms of Jacobian elliptic functions, for the eigenfunction 
at the margin of stability. This is true not only for the model problem but also for 
the proper problem (2.8) when s = 0. 

We have solved the problem (3.1) and (3.2) near the bifurcation on a, by the use 
of weakly nonlinear theory. The solution may be sketched as follows. The essential 
idea is to perturb the explicitly known solution of the linear problem at marginal 
stability. Accordingly, we define E = la-a21i, let a = a,+s2d for a" = f 1, define 
the slow timescales t ,  = s"t for n = 2,3, . . . , and make the formal expansions 

(3.13) G(y,t ,a,  R) = G(y,R)+sG(y,t, R)+e2G(y, t ,  R)+ ..., 
a a a 

at at, at, 
= E ~ - + E ~ - +  ... as E + O .  - (3.14) 

The expansions are justified heuristically in the sense that we have iterated the 
solution and found consistent solutions for G and G" in turn (cf. Drazin & Reid 
1981, $56). The technical success of the method depended on our being able to find 
a Green function to invert the ordinary differential operator, 

d4 d2 
dy4 2dy2 

L=-+4a2-+2a2R (3.15) 
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associated with the linear stability equation (3.8) and boundary conditions (3.9) for 
e = 0. It follows that 

(3.16) 
dG 

G‘(y, t ,  R) = AV,, R) - (y, R), 
dY 

where A satisfies an amplitude evolution equation of the form 

dA a-a -=- kA-lA3 ase+O. 
dtz la-azl 

(3.17) 

The constants k and 1 are complicated, being ratios of explicit integrals of algebraic 
functions of dG/dy and dzG/dy2, such that k > 0 and 1 < 0. This gives the subcritical 
pitchfork bifurcation, with A = 0 for the steady J H  flows of types 11, and 11, near 
bifurcation, and A = f ( k / (  -Z))i for flows of types IV, and V, when a < a,. 

Direct numerical solution of the linear stability problem (3.11) and (3.12) gives the 
onset of instability at a = 0.2308 with k = 41.5 for R = 20. 

We envisage that a similar method may be applied to the nonlinear vorticity 
equation to give the proper weakly nonlinear solution and show that there is a 
subcritical pitchfork bifurcation described by another amplitude equation of the 
form (3.17). The technical feasibility of such a method would depend upon using a 
Green function to invert the partial differential operator associated with the linear 
stability equation (2.8) for e = 0. 

The subcritical pitchfork bifurcation of the JH solutions on a, casts some light 
on the flow through slowly varying channels. Fraenkel (1973) proved that there 
exists a flow through a slowly varying symmetric channel which is approximated 
locally by a symmetric J H  flow for a < a3(R). We now see that this may occur where 
a < a,(R) for the value of R characterizing the steady flux along the channel, but 
that for a,(R) < a < a,(R) the flow is locally unstable and for a > a,(&) there is no 
contiguous symmetric J H  flow to which the channel flow could develop continuously. 
It is therefore plausible that Fraenkel’s result is relevant in practice only if a < a,(R) 
everywhere along the channel. 

This instability of J H  flows may be related to the quasi-parallel theory of Eagles 
(1966, 1973) for large values of the Reynolds number. However that theory is 
relevant to channel flow only when the angles between the tangents to the walls of 
the channel and a centreline are small, and so the flow approaches plane Poiseuille 
flow, because otherwise the flow will be unstable and break down. We have shown 
that the instability of a J H  flow of type 11, as a increases above a,(R) is the important 
one and that the marginally stable mode is stationary. This contrasts with Eagles’ 
finding complex eigenvalues for the most unstable modes which would seem, as in 
plane Poiseuille flow, to lead to a Hopf bifurcation, not a pitchfork bifurcation. 
Eagles also found some less unstable modes with phase velocities in the opposite 
direction to the basic flow, as Drazin (1961) had found earlier for a two-dimensional 
jet; so there is a stationary mode in these examples, but i t  is not the most unstable 
mode. These ‘unexpected ’ results may be the vestige, in the quasi-parallel approxi- 
mation, of the fact that the most unstable mode of the ‘exact’ divergent flow is 
stationary and that the ‘real’ bifurcation is a pitchfork. 

4. Calculations of solutions for channel flows 
In this section we review a large number of numerical experiments of two- 

dimensional flow in a symmetric channel. The calculations were undertaken to 
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simulate laboratory experiments which show asymmetric flow through a symmetric 
channel. The configuration used most frequently in experiments is a backward- facing 
step (cf. Cherdron et al. 1978) in which a parallel channel undergoes a sudden 
symmetric expansion to become another parallel channel. Our numerical methods 
cannot deal adequately with a sudden expansion so we have smoothed the expansion. 
Because we cannot simulate an infinite length of channel and we wish to avoid the 
introduction of approximate solutions at  the up- and downstream ends of the 
channel, we have assumed that the channel is periodic in the longitudinal direction. 
Given these limitations, the calculations agree well with the known experimental 
work and, furthermore, predict some phenomena which have not yet been observed. 

Since the details of our numerical method are important in discussion of the 
calculated flows, we start by describing the method. It was developed by Gillani & 
Swanson (1976) for flow through a cylindrical channel, and we have adapted it for 
two-dimensional flows. The method has been used successfully for years (cf. Sobey 
1980, 1982). The solution proceeds by assuming that the stream function $ and the 
vorticity field w are known at a given time, t say, and then integrating the vorticity 
equation to calculate the vorticity at a later time, t+6t say, in the interior of the 
channel. A Poisson equation is then solved to obtain the stream function at  the later 
time and the values of the stream function give the vorticity on the walls of the 
channel. The cycle is now complete, and the fields at time t + 26t can be calculated, 
and so forth. This basic method is modified in two ways. Firstly, by a Dufort-Frankel 
substitution, the vorticity fields at two previous time steps, t-6t and t ,  are used. 
Secondly, the nonlinear terms are upwind differenced so that the sign of the velocity 
determines the representation of derivatives such as a(uw)/ax. At each grid point the 
velocities are tested for u > 0, u = 0, or u < 0, and a different scheme used in each 
case. Full details are given by Gillani & Swanson. In  our particular problem several 
further details are relevant. Specifying the channel boundary by z = &f(z), we define 
a new lateral coordinate y = z/f(x) and transform the problem to the (5, y)-plane. If 
we define L as the period of the channel in the x-direction, the domain of the flow 
becomes the rectangle 0 < x < Land - 1 < y < 1. The transformation also introduces 
terms which involve a2/ax ay, and therefore a nine-point finite-difference scheme is 
used. A new nonlinear term a(w) /ay  arises. We have upwinded this term, using the 
sign of u but ignoring the sign of v. The only other non-standard device we have 
used is to apply the Dufort-Frankel substitution to the nonlinear terms in addition 
to the viscous terms. So, for differences at the ijth node, w i j ( t )  is replaced by 
$wi,(t + 6t )  +wtj(t-  6t ) )  throughout the entire scheme. A t  the boundaries we calculate 
the wall vorticity by a simple two-point formula. We also used Woods’ (1954) method 
but the results were little affected and we reverted to the simpler method for all the 
calculations described below. When solving the Poisson equation for the stream 
function we used over-relaxation and iterated the solution until the upstream and 
downstream boundaries were matched. Following Gillani & Swanson, we used 
composite grids, with a fine grid near the channel walls and a coarse grid near the 
centre of the channel. For the case L = 80, there were 962 x 5 grid points near each 
wall and 242 x 19 in the centre of the channel, giving 14218 points distributed 
through the channel; for the case when L = 40 the number of points was halved. 

The accuracy of the numerical scheme is first order in the grid size and second order 
in the time step. The calculations are, of course, not perfect, and imperfect 
bifurcations occur instead of perfect bifurcations. Also the scheme introduces the 
well-known phenomenon of artificial viscosity, so there is an upper bound on the 
values of R for which the accuracy is acceptable. Comparison of the results of our 
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numerical and laboratory experiments suggests that the numerical results are good 
for values of R up to about 150. Thus the numerical solutions are very accurate 
approximations to the well-defined nonlinear finite-difference equations, which we 
believe represent faithfully the behaviour of Newtonian fluids for a wide range of 
values of the Reynolds number. This belief is ultimately based on comparison of 
laboratory and numerical experiments. 

We are primarily interested in steady solutions, but we calculate them by solving 
initial-value problems. We assume that the flow is accelerated from rest during a 
short period and is then left to become steady. The Dufort-Frankel substitution 
requires the field at  two time steps. We take w = $ = 0 throughout the channel at 
t = 0. We assumed that during the first time step the motion is inviscid, and solved 
Vz$ = 0 to find the stream function associated with the small flux a t  time 6t. Then, 
knowing the stream function, we calculated the wall vorticity by assuming that the 
vorticity had diffused no further than (v6t)t during the first timestep. Throughout the 
interior of the channel the vorticity was set to zero. In this way the solution could 
be calculated from 26t onwards until a steady solution emerges after some time. 

Note that numerical methods are very powerful for the study of these flows 
because we can calculate the unstable symmetric solutions as well as the stable 
asymmetric solutions. Some symmetric solutions unstable to antisymmetric disturb- 
ances are calculated by setting $ = 0 on the centreline of the channel and by 
integrating the solution in only one half of the channel. 

The configuration of the channel is defined by its equation z = & f(x) where 

1 + t ( D -  1) (1 - cos ($rz)} (0 < x < 4), 
(4 < x < L-4), 

l + ~ ( D - l ) { l - c o s ( ~ ( L - z ) ) }  (L-4 ,< x ,< L ) .  
(4.1) 

The expansion ratio of the channel is D and in all cases the expansion occurs over 
the length 0 < z < 4. It can be seen that the transformation from ( x , z )  to (x,y) 
coordinates is not orthogonal, so we expect errors in the finite-difference scheme to 
become large as D becomes large. 

We define a norm-like state variable 1: to measure the asymmetry of the flow, where 

s,” dz rx) dz{ $(z, z )  + $(z, - z)>* sr dx S” dz 
9 (4.2) -f(X) 6 =  

- f W  

> 0 if the mainstream is deflected towards the upper wall and 5 < 0 if it is directed 
towards the lower wall. The flow is symmetric about the centreline z = 0, i.e. $ is 
an odd function of z, if and only if 5 = 0. We envisage the solution $ as a point in 
an infinite-dimensional space which varies as R is increased, and 1: as a map of the 
solution, for each value of R, into the (R,Y)-plane. Note also that the single statc 
variable 6 does not completely characterize the flow ; only the stream function $ does 
that. Consequently there are instances below in which ambiguity arises when we 
follow the development of the solution as R varies. The first channel we studied was 
for L = 80 and D = 3. It is known from laboratory experiments that flow through 
a channel with a 3: 1 expansion ratio becomes asymmetric when R x 20. For this 
configuration separation arises when R x 5 .  We show in figure 4 the streamlines of 
symmetric and asymmetric steady flows as R varies. When we calculate 6 (see figure 
5), we find that the first bifurcation occurs at R, = 5.95. We have shown that this 
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FIGURE 4. Calculated streamlines for both symmetric and aeymmetric steady flow through a 
channel with D = 3 and L = 80. (a) Symmetric flows ( i )  R = 30, (ii) R = 50, (iii) R = 75. 
( b )  Asymmetric flows (iv) R = 30, (v) R = 50, (vi) R = 75. 

FIGURE 5. Calculated bifurcation diagram for a channel with D = 3 and L = 80. 

is a pitchfork by plotting l2 against R and confirming plausibly that the stream 
functions of the two asymmetric steady flows are of the form 

+*(x,z, R )  = Y(~,~,R,)~(R-R,)~~,(~,z,R,)+~(R-R,) as R-tR;,  (4.3) 

where Y is the stream function of the symmetric flow and is the antisymmetric 
most unstable eigenfunction. In particular, we calculated the most unstable symmetric 
solution Y and a stable asymmetric solution $+ for R > R,, and hence estimated +- as 2Y-$+ ; the estimation was confirmed when R was close to R, by taking the 
estimate as the initial solution in a subsequent initial-value calculation. In this 
manner the existence of both $.+ and $- was confirmed, i s .  there are two steady 
stable solutions when R-R, is small and positive. As R is increased the asymmetry 
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FIQURE 6. Calculated time dependence of separation and re-attachment points on both upper (left 
side) and lower (right side) walls of a channel with D = 3 and L = 80. (a) R = 25, ( b )  R = 30, (c) 
R = 50, (d )  R = 100. 

increases until another bifurcation occurs and a new stable solution appears. By 
decreasing R afterwards, we found that over the range 15 < R < 20 there were four 
stable solutions. This behaviour seems to be due to two simple turning points 
connecting a branch of unstable steady solutions (which we have not calculated) with 
the two branches of stable steady solutions found, but may be related to a secondary 
instability of the symmetric flow to asymmetric disturbances. However, when D = 1 
and there is plane Poiseuille flow, i t  is well-known that there is no secondary 
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20 

1 2 3 4 5 6 7 8  9 r  

FIGURE 7. Time development of oscillatory solutions in a channel with D = 2 and L = 40 
when R = 165. (a) Upper wall, (b) lower wall, (c) instantaneous streamlines. 

instability, and indeed, the primary instability follows a Hopf bifurcation. For 
R > 30 we found only two stable solutions. There is little asymmetry for R < 30. 
Recalling that the stream function + varies between f 1, we see that the values of 
[ in this range of R represent asymmetries of a few per cent of the variation of +. 
For R > 30 the asymmetry becomes much larger, and it is this that  has been observed 
by Cherdron et al. (1978) in their laboratory experiments. The first bifurcation has 
not yet been observed. 

Another way of describing the flow is to  plot the development in time of the 
position of the vortices, or separation bubbles, near the walls, as in figure 6. It can 
be seen that evcn though the solution is globally stable there are what appear to be 
small local instabilities of the shear layers in the downstream vicinity of the 
separation points. These disturbances grow as R increases to about 20 and thereafter 
decrease, disappearing when R approaches 100. 

The channel length 80 was studied first because we wished to  minimize the effect 
of the finiteness of the channel length. Such a long channel requires very large 
computational effort, so we reduced the length of the channel to 40 in order to study 
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FIQURE 8. Variation of the state variable ‘standard deviation of the position of the re-attachment 
point against time’ versus Reynolds number for a channel with D = 2 and L = 40. 

systematically the effect of varying the expansion ratio. Comparison of results for 
L = 40 and L = 80 a t  D = 2 suggests that  they are qualitatively similar and that the 
point of bifurcation does not depend sensitively on large L. If D = 2 and L = 40 then 
for R < 11 there is a unique steady solution which is stable and symmetric. For 
higher values of R a pitchfork bifurcation occurs and there are two stable asymmetric 
steady solutions, and one unstable symmetric steady solution. As R increases further 
there is a turning point and then four stable asymmetric steady solutions, and by 
inference, three unstable steady solutions, one of which is the only symmetric 
solution; we do not find large asymmetries in the range R < 100, rather the 
asymmetric solutions are very close to  being symmetric. As R increases to near 100 
the flow becomes unsteady, the re-attachment point oscillating. This agrees with 
descriptions of observations which have been presented in the literature. We deduce 
that a Hopf bifurcation occurs, although we have not been able to  calculate the 
bifurcation point accurately. When R increases to  about 150 the periodicity of the 
solution is clear; in figure 7 we show both the instantaneous streamlines, and graphs 
of the separation and re-attachment points as functions of time. It can be seen that 
the vortices are shed from the main vortices behind the expansion and that i t  is this 
shedding process which is periodic. We have defined a state variable to  describe the 
periodic solutions by calculating the standard deviation of the re-attachment point 
as it oscillates. I n  figure 8 we show the variation of this variable with R.  It can be 
seen that there is a new bifurcation with two stable periodic solutions for a small 
range of R. 

We have calculated the bifurcation diagram for 1.25 ,< D ,< 2.5 and R < 100, as 
shown in figure 9. At larger values of D ,  for example D = 2.5, the bifurcation diagram 
corresponds to the description above for L = 80. A pitchfork bifurcation occurs a t  
a low value of R and there are two stable solutions and one unstable solution. Then 
there are four stable solutions so that hysteresis may occur; by inference, there are 
three unstable solutions. Thereafter two stable asymmetric solutions remain. As the 
expansion ratio decreases the picture changes. Firstly we did not find large 
asymmetry a t  large values of R.  Secondly the region of hysteresis becomes more 
complicated and more stable solutions arise. For a channel with L = 40, D = 1.35 
and R = 80, we found four stable solutions with 5 > 0 and infer that  there are seven 
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FIQURE 10. Perturbation streamlines of four stable solutions found for L = 40 and D = 1.35 a t  
R = 80. By inference four other stable solutions exist and seven unstable solutions. The stable 
solutions are obtained by reflecting these streamlines about the centreline of the channel. 
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FIGURE 11. Calculated values of the variable 7 as the Reynolds number vanes for a 

channel with L = 40 and D = 1.5. Cf. figure 9(d ) .  

unstable and eight stable steady solutions in this case. The stream functions of the 
four stable solutions with y > 0 are indicated in figure 10, where we have contoured 
$ -$(3y-y3), the difference between the calculated stream function and the stream 
function of the local plane Poiseuille flow. As D is decreased there is much scatter 
in the bifurcation diagram. It is difficult to determine the cause of this while we are 
using only one functional of the stream function. So we calculated a second state 
variable, 7, for the case D = 1.5, defining it by 

(4.4) 
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where 7 2 0. I n  figure 11 we plot the calculated values of 7 against R. The scatter 
disappears and the different solution branches are clearly visible. Thus the scatter 
seems to  be an artefact of our use of a single state variable 5 to  represent the stream 
function. Note also that the magnitude 5 of the asymmetry decreases as the 
expansion ratio D decreases. 

These basic results will be interpreted below. The computations are lengthy and 
expensive in terms of CPU time, figures 8 to 15 representing 30 h of CPU time of a 
CRAY computer. Only a limited amount of information can be communicated 
effectively, so we have characterized the flows by the state variables 7 and 5, the 
positions of the points of separation and re-attachment, and the contours of the 
stream function. 

5. Results of laboratory experiments 
We have described many flows above, calling some of them stable and others 

unstable. I n  calling a flow stable we have usually assumed the implicit qualification 
that i t  is stable to two-dimensional disturbances, because our methods are restricted 
to those disturbances. It is important then to find whether the flows we have 
described as stable arc indeed stable to three-dimensional disturbances. The evidence 
for this must a t  this stage come from laboratory experiments. The large literature 
on experimental observations of channel flows is invaluable here. Also we have 
observed the flow of water through channels by illuminating small reflective particles 
suspended in the water. Two symmetric ‘two-dimensional’ channels were used. 
I n  one a 15 x 1 mm rectangular section undergoes a right-angled expansion to  
a 15 x 3 mm section. In  the other a 15 x 3 mm section contracts smoothly to a 
15 x 1 mm section and then expands smoothly to the original channel size. Of course, 
all flows in these channels, with finite width, were three-dimensional. In  both 
channels the general sequence of events as R increased was first steady flows 
symmetric in both transverse directions, then steady flows asymmetric in the ‘plane’ 
of the flow but symmetric in the perpendicular direction, i.e. across the flow, and 
finally unsteady flows. We could not observe the unsteady flows closely enough to 
be sure, but our impression is that means of the unsteady flows are symmetric across 
the channel and asymmetric in thc plane of the flow. Sobey (1985) has illustrated this 
sequence in the case of a sudden channel expansion. To demonstrate the importance 
of the nature of the expansion we show here photographs taken in a channel which 
contracts and expands smoothly. In  figures 12(a, b)  when R = 40 the flow is 
symmetric in both the plane of the flow and across the channel. Figare 12(b)  should 
be contrasted with figure 2 ( f )  in Sobey (1985). At higher Reynolds ~umbers ,  in this 
case R = 85, the flow is asymmetric in the plane of the flow but still syhmetric across 
the channel (figure 12c, d ) .  

Other points come from the literature. For a 3 : 1 expansion ratio, the value of the 
Reynolds number a t  which asymmetries have been first observed is from 20 to 30 
according to  the aspect ratio of the channel. It can be seen from figure 5 that this 
agrees with our calculation that large asymmetries occur for R > 30. We predict 
small asymmetries for the range R < 30 which appear not to have been observed yet, 
but laser-Doppler techniques may provide a means of observing them. 

Cherdron et al. (1978) reported oscillations in the neighbourhood of the re- 
attachment point, and they found small oscillations near the separation point. It is 
important to distinguish between oscillations near the separation point, which may 
be no more than a symptom of a small local instability in an otherwise steady flow, 
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FIGURE 12. Observation of flow in a channel showing three-dimensionality of the flow field. (a )  
R = 40, centreplane illuminated, (a) R = 40, viewed from above, (c) R = 85, centreplane illumi- 
nated, (d) R = 85, viewed from above. 
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D 1.25 1.35 1.5 2 2.5 3 
32 27 21 1 1  8 6 
47 34 25 12 8.9 5.8 

215 94 40 12 7 5 

TABLE 2. Values, as D varies, of (i) the critical value R, of the Reynolds number calculated for 
the primary bifurcation of channel flows with L = 80, (ii) the critical value R,, of the Reynolds 
number for the bifurcation 1, of Jeffery-Hamel flows (baaed on table 1 and the maximum angle 
of slope of the channel wall), and (iii) the Reynolds number Rsep calculated at the onset of 
separation in channel flows with L = 80 (note that the values for D close to one are uncertain 
because of the numerical errors at large values of R) 

and oscillations near the re-attachment point, which are a better indication that the 
flow has become globally unsteady. 

6. Conclusions 
We have introduced bifurcation theory and applied it in detail to two examples 

of two-dimensional flows, Jeffery-Hamel (JH) flows and numerical solutions for 
channel flows. Here we first discuss the relationship of JH to channel flow. If J H  flows 
were to be local approximations to flow through a slowly varying channel then we 
would expect the breakdown of symmetric J H  flow to correspond to the first 
bifurcation observed in the numerical solutions for channel flow. The evidence we 
have given above does not support this correspondence because the qualitative 
nature of the symmetry breaking differs in the two examples. For J H  flows there is 
a subcritical pitchfork bifurcation and no stable flow above a certain value either of 
the Reynolds number (for a fixed configuration of the channel), or the maximum 
angle between the channel walls (for a fixed value of the Reynolds number). For 
channel flows, our calculations show a supercritical pitchfork bifurcation and stable 
steady asymmetric flows for much higher values of the Reynolds number. 

It is remarkable that channel flows have a supercritical bifurcation although 
J H  flows both have a subcritical bifurcation and approximate wall channel flows 
upstream of the station x where the angle a = tan-' (dfldx) is a maximum. In any 
event, i t  seems that J H  flows are irrelevant to a channel flow downstream of a point 
of separation. It is also remarkable that the correlation between the JH estimate of 
the station of both bifurcation and separation in table 2 is worst when D is closest 
to one, i.e. when 

is least. Perhaps a more effective measure of the rapidity of the change of a than 
da/dx is 

d" - d a y  
dz dx dx' 

However it is more rational to infer that the approximation of the slow variation of 
a is valid when h da/dx 4 1, where h is the total lengthscale of decay downstream 
of the least stable normal mode of the linearized steady problem. Wilson (1969) used 
this method to examine the spatial adjustment of steady flows to plane Poiseuille 
flow successfully, although the definition of h is not so clear €or non-parallel flows. 
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Then we would expect A to be small where the channel flow is locally very stable, i.e. 
near the entrance, and become infinite where there is local instability, i.e. in the throat 
when R > R,. This argument indicates that J H  flows are good local approximations 
to a channel flow where it is locally stable, but does not explain why the approximation 
is worst when D x 1. 

Symmetric J H  flows do approximate channel flows near the inlet, and give a useful 
estimate of the value R, of the Reynolds number at which channel flows first 
bifurcate, as table 2 shows for various values of D. Further separation occurs near 
the station where the slope of the channel is greatest. Table 2 also shows that as 
D decreases towards one the J H  approximation worsens, channel flows becoming 
unstable to asymmetric disturbances before JH flow based on the maximum wall 
slope does. Although it must be remembered that JH flows are strictly comparable 
to channel flows only if the angle between the channel walls changes very slowly 
downstream and that we used channels with angles which do not change slowly, we 
believe that the discrepancies noted above are of deeper significance. 

Separation and bifurcation are conceptually different phenomena, but are some- 
times confused because they may appear to arise together. Separation is the reversal 
of flow near a wall. Bifurcation is a change in the number of flows which may occur 
in a given configuration at a given value of the Reynolds number. We have shown 
that for symmetric channels there is a unique steady symmetric flow when R < R, 
which becomes unstable as R passes through R,, the first eigenfunction, fil, being 
in general antisymmetric at the onset of instability. Weakly nonlinear theory gives 
formula (4.3) to describe the two asymmetric steady flows for small positive values 
of R -  R,. If Ynn, the normal gradient of the tangential velocity, vanishes at a wall 
when R = R, then the second term on the right-hand side of (4.3) dominates the first 
term sufficiently close to the wall, however small R- R, may be. Therefore there is 
separation near the wall. Now for JH flows, Ynn = 0 at the walls when R = R, so 
separation and bifurcation arise together. For plane Poiseuille flow, Ynn 9 0 at the 
walls when R = R, and the primary bifurcation is a Hopf, not a pitchfork, so 
separation and bifurcation do not arise together. Table 2 shows that for channel flows 
separation and bifurcation in general do not arise together. 

Many of our numerical results follow those of Cliffe & Greenfield (1982), who 
considered flows through a two-dimensional channel with an expansion but no 
contraction. Not only are the shape of their expansion and their boundary conditions 
different from ours, but they solved only steady problems by the Newton-Raphson 
method for an expansion ratio 2 : 1. The advantage of the Newton-Raphson method 
is that i t  may converge clearly to unstable as well as stable steady solutions, but it 
does not give the evolution of flows as time increases. In  any event, using the distance 
downstream of the point of re-attachment on the upper wall as a state variable and 
a Reynolds number as the control variable, they showed clearly that there is 
symmetry breaking a t  a pitchfork bifurcation. They found the bifurcation at  much 
higher values of the Reynolds number than we have done, and that may be because 
the boundary conditions we have applied are periodic in the direction of flow whilst 
theirs were not, or because the shape of their channel differs from ours. We have seen 
that the maximum angle of the channel throat is an important factor in determining 
the critical value of the Reynolds number. 

Further our numerical results connect plane Poiseuille flow with more general 
channel flows. For values of D x 3, we have calculated steady asymmetric flows for 
which the degree of asymmetry is large. A t  values of D x 2, we find steady solutions 
with a small degree of asymmetry and at large values of the Reynolds number, 
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unsteady solutions. As the expansion ratio approaches one we have found only small 
steady asymmetries. I n  the limit as D+ 1 there is only a subcritical Hopf bifurcation 
of plane Poiseuille flow. 

I n  order to establish the connection between these flows we must first return to 
the nature of our solutions. Our calculations are imperfect; numbers are stored with 
finite accuracy, the differential equations which describe the flow are represented by 
a nonlinear set of difference equations which are solved with a finite accuracy. The 
difference equations are known to model the differential equations with a great 
degree of similitude for small values of the Reynolds number. At larger values of R 
the correspondence between the differential equations and the difference equations 
decreases. When several different stable solutions exist each will have a domain of 
attraction in the multi-dimensional space for which the stream function is but a 
point. The fine details of the numerical scheme and the manner in which numbers 
are represented by a finite number of digits will place any initial value of the stream 
function in the domain of attraction of a particular solution. The finiteness of the 
time for which the calculation proceeds may mean that the stream function may not 
have reached the close vicinity of the stable solution when the calculation is stopped. 
These ideas all indicate that numerical solutions should be approached with a certain 
degree of scepticism unless they are supported by experimental evidence. 

Our interpretation of the results is then as follows. At large values of D the 
bifurcation to steady asymmetric flow produces a very stable flow structure, and one 
for which we have not been able to calculate time-periodic two-dimensional solutions. 
As D decreases the steady asymmetric solutions are less stable (in the sense that their 
domain of attraction in the stream function space is smaller) and for R 5 100 we 
calculate steady solutions and for R 2 100 we calculate time-periodic solutions. We 
have not been able to track the steady asymmetric solutions in this region, and the 
limited accuracy of our calculations has made it impossible to identify precisely the 
onset of time-periodic solutions. As D approaches one the magnitude of the steady 
asymmetry decreases and the value of R for the first bifurcation rises rapidly. For 
these flows we were not able to calculate any time-periodic solutions, presumably 
because the point of bifurcation to  time-periodic solutions occurs a t  much larger R; 
nevertheless i t  is plausible that i t  is in this way that the Hopf bifurcation at D = 1 
is achieved. 

Experiments have realized some of the stable asymmetric flows described by our 
two-dimensional calculations. Some of the asymmetries we have presented are well 
known, others are new. We hope that further experiments will confirm the rich 
structure which our numerical calculations have demonstrated. 

We are grateful to Professor L. E. Fraenkel for discussion of Jeffery-Hamel flows. 
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